Geometric Probability Distribution \& TI

What is a geometric probability distribution?
It is a discrete probability distribution of random variable x such that

1. A trial is repeated until a success occurs.
2. The repeated trials are independent of each other.
3. The probability of success p remains the same for each trial.

Then the probability that the first success will occur on trial number x is

$$
P(x)=p \cdot(q)^{x-1}, \text { where } q=1-p
$$

with $\mu=\frac{1}{p}$ and $\sigma^{2}=\frac{q}{p^{2}}$.

Geometric Probability Distribution \& TI:

When you have	Use TI command
$P(x=a)$	geometpdf (p, a)
$P(x \leq a)$	$\operatorname{geometcdf}(p, a)$
$P(x \geq a)$	$1-\operatorname{geometcdf}(p, a-1)$

How to find the TI Command:

2nd VARS , scroll down to geometpdf or geometcdf, followed by pressing ENTER button twice.

Example:

The probability that you will make a sale on any given phone call is 0.19 . Find the probability that you

1. make your first sale on the fifth call.
2. make your first sale on the first, second, or third call.
3. do not make a sale on the first three calls.
4. Find the mean and variance.

Solution:

1. make your first sale on the fifth call. $\Rightarrow P(x=5)$

$$
\begin{aligned}
P(x=5) & =.19 \cdot(.81)^{5-1} \\
& =\operatorname{geometpdf}(.19,5) \\
& \approx 0.0818
\end{aligned}
$$

2. make your first sale on the first, second, or third call. $\Rightarrow P(x=1, x=2$, or $x=3)$

$$
\begin{aligned}
P(x=1, x=2, \text { or } x=3) & =P(x \leq 3) \\
& =.19 \cdot(.81)^{1-1}+19 \cdot(.81)^{2-1}+19 \cdot(.81)^{3-1} \\
& =\operatorname{geometcdf}(.19,3) \\
& \approx 0.468
\end{aligned}
$$

3. do not make a sale on the first three calls. $\Rightarrow P(\overline{x=1, x=2, \text { or } x=3})$

$$
\begin{aligned}
P(\overline{x=1, x=2, \text { or } x=3}) & =1-P(x=1, x=2, \text { or } x=3) \\
& =1-\left(.19 \cdot(.81)^{1-1}+19 \cdot(.81)^{2-1}+19 \cdot(.81)^{3-1}\right) \\
& =1-P(x \leq 3) \\
& =1-\operatorname{geometcdf}(.19,3) \\
& \approx 0.531
\end{aligned}
$$

4. Find the mean and variance.

$$
\begin{aligned}
\mu & =\frac{1}{p}=\frac{1}{.19} \approx 5.263 \\
\sigma^{2} & =\frac{q}{p^{2}}=\frac{1-.19}{.19^{2}} \approx 22.438
\end{aligned}
$$

